Извлечение из ФОП ООО утвержденный приказом № 208 от 31 августа 2023г.

РАБОЧАЯ ПРОГРАММА

по внеурочной деятельности «Юный физик» для 8-9 классов на 2023-2024 учебный год

1. Пояснительная записка

Рабочая программа внеурочной деятельности «Юный физик» для обучающихся 9 класса по общеинтеллектуальному направлению разработана на основе программ:

- Примерной программы основного общего образования. Физика. 7-9 классы. Естествознание. 5 класс. М.: Просвещение, 2014. 80 с.
- Программы под редакций А.Е.Гуревича, Д.С.Исаева, А.С.Понтак. М.: Дрофа. 2000.
- Программы элективных курсов. Физика. 9-11 классы. Профильное обучение / В.А. Коровин М.: Дрофа, 2005. 125 с.

При составлении программы использованы материалы учителей:

• Гильфанова, Ю.И. Программа элективного курса «Занимательные опыты по физике» [Электронный ресурс] / http://gilfanova-juliya.ru/d/329273/d/elektivnyy-kurs-po-fizike-zanimatelnye-opyty-po-fizike.doc.

Программа рассчитана на 1 год обучения (68 часа), количество часов в неделю -2, количество часов в год -68.

Актуальность программы определена тем, что внеурочная экспериментальная деятельность обучающихся в области естественных наук в 5 – 9 классах является наиболее благоприятным этапом для формирования инструментальных (операциональных) личностных ресурсов; может стать ключевым плацдармом всего школьного естественнонаучного образования для формирования личностных, метапредметных и предметных образовательных результатов, осваиваемых обучающимися на базе одного или нескольких учебных предметов, способов деятельности, применяемых как в рамках воспитательно-образовательного процесса, так и в реальных жизненных ситуациях.

Новизна программы заключается в:

- экспериментальном подходе к определению физических закономерностей;
- доступности курса для младших школьников;
- возможности создавать творческие проекты, проводить самостоятельные исследования;
- прикладном характере исследований;
- развернутой схеме оценивания результатов изучения программы.

Цель программы — формирование умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования

объектов и явлений природы; развитие познавательных интересов и творческих способностей обучающихся, передача им опыта творческой деятельности.

Задачи:

- формировать у обучающихся умение безопасного и эффективного использования лабораторного оборудования;
- формировать навыки исследовательской деятельности, управления объектами с помощью составленных для них алгоритмов;
- формировать готовность и способность обучающихся к осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений;
- создать условия для формирования коммуникативной компетентности в общении и сотрудничестве со сверстниками, взрослыми в процессе учебно-исследовательской и творческой деятельности; умения выступать перед аудиторией, представляя ей результаты своей работы с помощью средств ИКТ.

2. Планируемые результаты освоения курса внеурочной деятельности

Личностные результаты

- развитие любознательности и формирование интереса к изучению природы методами естественных наук;
- развитие интеллектуальных и творческих способностей обучающихся;
- воспитание ответственного отношения к природе, осознания необходимости защиты окружающей среды, стремления к здоровому образу жизни;
- развитие мотивации к изучению в дальнейшем различных естественных наук.

Метапредметные результаты

- овладение способами самоорганизации учебной и внеурочной деятельности;
- освоение приемов исследовательской деятельности;
- формирование приемов работы с информацией;
- развитие коммуникативных умений и овладение опытом межличностной коммуникации, корректное ведение диалога и участие в дискуссии; участие в работе группы в соответствии с обозначенной ролью.

Предметные результаты освоения курса с учётом общих требований Стандарта должны обеспечивать успешное обучение на следующей ступени общего образования. Ученик, освоивший курс «Юный физик», должен освоить начальные умения и навыки в проектной деятельности от постановки проблемы до создания портфолио проекта.

Воспитательные результаты: Первый уровень

- формирование у подростков потребности познания окружающего мира и своих связей с ним;
- формирование экологически обоснованных потребностей, интересов, норм и правил (в первую очередь, гуманного отношения к окружающим людям, живым существам, природному окружению); Второй уровень
- активное участие в природосберегающей деятельности;
- осознанный выбор здорового образа жизни;
- развитие эмоциональной сферы, способности к сопереживанию, состраданию;

Третий уровень

• развитие настойчивости и воли в достижении целей самообразования и улучшения состояния окружающей природной среды.

3. Содержание материала

1.	Презентация курса	Знакомство с содержанием курса с применением компьютерных технологий. Знакомство с листами активности учащихся и построения графика настроения. Изучение особенностей учащихся и уровня их развития, путем тестирования. Беседа о технике безопасности. Знакомство с условными обозначениями.
2.	Механика	Правила и алгоритмы решения задач. Качественные и количественные задачи. Формулы по курсу. Графические методы решения задач. Движение тел под действием нескольких сил. Решение задач различными способами, в том числе с учетом ЗС. Комбинированные задачи.
3.	МКТ. Термодинами ка.	Формулы по разделу. Качественные и расчетные задачи на газовые законы. Конденсированные состояния. Задачи на тепловой баланс. Взаимный переход механической и тепловой энергии друг в друга. Тепловые двигатели. Комбинированные задачи.
4.	Электродинам ика	Формулы по разделу. Качественные и расчетные задачи на темы «Электростатика. Законы постоянного тока. Магнетизм». Задачи на принцип суперпозиции полей. Задачи на соединения и расчет цепей смешанного типа. Электропроводность

		веществ. Комбинированные задачи.
5.	Колебания и волны	Формулы по разделам «Механические и электромагнитные колебания и волны». График колебания. График волны. Модели колебательных движений. Колебательный контур. Решение уравнений, описывающих колебательные движения. Комбинированные задачи.
6.	Оптика	Формулы по разделу. Законы геометрической и волновой оптики. Линзы. Решение комбинированных задач. Основные формулы и понятия СТО.
7.	Квантовая физика	Формулы по разделу. Фотоэффект. Качественные и расчетные задачи на фотоэффект. Тепловое излучение. Комбинированные задачи по теме.
8.	Физики атома и атомного ядра	Формулы по разделам. Теория атома водорода по Бору. Качественные и количественные задачи на физику атома и атомного ядра. Закон радиоактивного распада. Комбинированные задачи по теме.
9.	Подготовка к ЕГЭ и ОГЭ	Решение задач уровня «А» и «В» и «С» при подготовке к экзаменам.

4.Тематическое планирование

№	Тема	Кол-во часов
	Презентация курса	2
	Механика	8
	МКТ. Термодинамика	7
	Электродинамика	8
	Колебания и волны	9
	Оптика	8
	Квантовая физика	9
	Физики атома и атомного ядра	9
	Подготовка к ЕГЭ и ОГЭ	8
	Итого	68

5. Календарно-тематическое планирование

No	Тема	Кол-во часов	Дата
1.	Презентация курса	2	
2.	Классификация физических задач	2	
3.	Основы кинематики	2	
4.	Основы динамики. Уравнение равномерного прямолинейного движения точки	2	
5.	Уравнение движения тела с постоянным ускорением	2	
6.	Криволинейное движение. Движение по окружности	2	
7.	Кинематические величины	2	
8.	Свободное падение, вывод формул	2	
9.	Баллистическое движение	2	
10.	Люди науки, внесшие вклад в становление и развитии баллистики	2	
11.	Анализ олимпиадных задач по физике (подготовительный этап к школьной и районной олимпиаде по физике)	4	
12.	Равновесие тел	2	
13.	Законы сохранения	2	
14.	Семинар по теме: «Практическое применение законов сохранения»	2	
15.	Молекулярная физика и термодинамика	2	
16.	Работа с текстовыми задачами по теме: «Молекулярная физика и термодинамика»	4	
17.	Термодинамика	2	
18.	Коэффициент полезного действия	2	
19.	Постоянный электрический ток	2	
20.	Сила Ампера и сила Лоренца	2	
21.	Электромагнитная индукция. Самоиндукция	2	
22.	Использование генераторов и трансформаторов	2	
23.	Линзы. Построение изображений в тонких	2	

	линзах		
24.	Интерференция, дифракция, дисперсия	2	
25.	Уравнение Эйнштейна. Строение атома	2	
26.	Энергетические уровни	2	
27.	Атомное ядро. Правила Содди	2	
28.	Ядерные реакции и энергетический выход ядерных реакций	2	
29.	Элементарные частицы	2	
30.	Беседы о физиках. Нобелевские лауреаты по физике	2	
31.	Интересные явления в природе	2	
32.	Защита мультимедийных презентаций	2	
33.	Итого	68	

6. Список литературы

Информационно – методическое обеспечение

- 1. Внеурочная деятельность школьников. Методический конструктор: пособие для учителя/ Д.В. Григорьев, П.В. Степанов. М.: Просвещение, 2011. 223 с. -. (Стандарты второго поколения).
- 2. Внеурочная деятельность. Примерный план внеурочной деятельности в основной школе: пособие для учителя/. В.П. Степанов, Д.В. Григорьев М.: Просвещение, 2014. 200 с. -. (Стандарты второго поколения).
- 3. Рабочие программы. Физика. 7-9 классы: учебно-методическое пособие/сост. Е.Н. Тихонова.- М.:Дрофа, 2013.-398 с.
- 4. Федеральный государственный стандарт общего образования второго поколения: деятельностный подход [Текст]: методические рекомендации. В 3 ч. Часть 1/ С.В.Ананичева; под общ. Ред. Т.Ф.Есенковой, В.В. Зарубиной, авт. Вступ. Ст. В.В. Зарубина Ульяновск: УИПКПРО, 2010. 84 с
- 5. Занимательная физика. Перельман Я.И. М.: Наука, 1972.
- 6. Хочу быть Кулибиным. Эльшанский И.И. М.: РИЦ МКД, 2002.
- 7. Физика для увлеченных. Кибальченко А.Я., Кибальченко И.А.– Ростов н/Д.: «Феникс», 2005.
- 8. Как стать ученым. Занятия по физике для старшеклассников. А.В. Хуторский, Л.Н. Хуторский, И.С. Маслов. – М.: Глобус, 2008.
- 9. Фронтальные лабораторные занятия по физике в 7-11 классах общеобразовательных учреждений: Книга для учителя./под ред.

- В.А. Бурова, Г.Г. Никифорова. М. : Просвещение, 1996.
- 10. Федеральный государственный образовательный стандарт [Электронный ресурс]. Режим доступа: http://standart.edu/catalog.aspx?Catalog=227
- 11. Сайт Министерства образования и науки Российской Федерации// официальный сайт. Режим доступа: http://минобрнауки.pd/
- 12. Методическая служба. Издательство «БИНОМ. Лаборатория знаний» [Электронный ресурс]. Режим доступа: http://metodist.lbz.ru/
- 13. Игровая программа на диске «Дракоша и занимательная физика» [Электронный ресурс]. Режим доступа: http://www.media 2000.ru//
- 14. Развивающие электронные игры «Умники изучаем планету» [Электронный ресурс]. Режим доступа: http:// www.russobit-m.ru//
- 15. Авторская мастерская (http://metodist.lbz.ru).
- 16. Алгоритмы решения задач по физике:

festivai.1september.ru/articles/310656

17. Формированиеумений учащихся решать физические задачи: revolution. allbest. ru/physics/00008858_0. html